If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t-87=0
a = 1; b = 10; c = -87;
Δ = b2-4ac
Δ = 102-4·1·(-87)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{7}}{2*1}=\frac{-10-8\sqrt{7}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{7}}{2*1}=\frac{-10+8\sqrt{7}}{2} $
| X+4/x+7=0 | | 2x=3+12 | | (5r)^2-(4)^2=0 | | 3+2u=5 | | 4=12/j | | 13/10n=-30/39 | | 4x^2-18x=56 | | 29=x/8 | | 6x-10+x=52+x | | w÷2=6 | | 3x+13=38 | | Y+4/3y-8=1 | | -6(9-5x)=-230 | | z/5-5=2+1/6 | | 9+10x=19x | | 88+x=88x-5 | | 13y=-65 | | 7w+2=÷w+94 | | -3=g–10 | | v−15=−27 | | X/12+1/6=y/2-1/4 | | 6+5x=28+3x | | |2/3u-6|=24 | | -63+2x=117-10x | | 5x+3=2(3x-8) | | x/5-6=13/6 | | 4/11y=13/33 | | 8.6=z-3.6 | | r-3+ -7= -5 | | 2x+104=15x | | -2=3b-4 | | -4/11y=-13/33 |